If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11x^2+18x-9=0
a = 11; b = 18; c = -9;
Δ = b2-4ac
Δ = 182-4·11·(-9)
Δ = 720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{720}=\sqrt{144*5}=\sqrt{144}*\sqrt{5}=12\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-12\sqrt{5}}{2*11}=\frac{-18-12\sqrt{5}}{22} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+12\sqrt{5}}{2*11}=\frac{-18+12\sqrt{5}}{22} $
| x-8.6=1.67 | | 7n+8=50 | | 11x^2+18x-91=0 | | 2x^2+4x−1=0 | | u-5.1=1.7 | | s–7/8=-10 | | 4b-15=33 | | 125m-100m+38,400=40,400-175m | | f(2)-2=2(2)-2 | | |6x-5|=17 | | 3y+7=2y+6 | | a/15+1=2 | | 78=v3 | | 11+1(3x-11)=5(-12x-2) | | 2+20n=18n-7+3n | | g(2)-2=2(2)-2 | | 6p-4=20 | | 13y-5=9+3(2y-1) | | 49+t=16 | | 3c-8c+7=-17 | | -9-2y=-39+4y | | 9(x−2)−1=5x+4(−5+x) | | 11x17-6x=2 | | 9=3(k+4)/2 | | 22x=-10 | | x+2x+(3x+40)=180 | | 2x-5-6x=8x+2 | | 2x-39=x-11 | | 1.05x=84 | | 5r+5=30 | | 5.2-x.5=5 | | x2-3x-12=0 |